We are asked to find the scalar components of a unit vector that is perpendicular to both of the given vectors:
- \( \mathbf{A} = \hat{i} + 2\hat{j} - \hat{k} \)
- \( \mathbf{B} = 3\hat{i} - \hat{j} + 2\hat{k} \)
To find a vector that is perpendicular to both, we take the cross product of \( \mathbf{A} \) and \( \mathbf{B} \).
Step 1: Compute the cross product \( \mathbf{A} \times \mathbf{B} \).
The cross product of \( \mathbf{A} \) and \( \mathbf{B} \) is given by the determinant:
\[
\mathbf{A} \times \mathbf{B} = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k}
1 & 2 & -1
3 & -1 & 2
\end{vmatrix}
\]
Expanding the determinant:
\[
\mathbf{A} \times \mathbf{B} = \hat{i} \begin{vmatrix} 2 & -1
-1 & 2 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & -1
3 & 2 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 2
3 & -1 \end{vmatrix}
\]
Now, compute each 2x2 determinant:
- For \( \hat{i} \): \( \begin{vmatrix} 2 & -1
-1 & 2 \end{vmatrix} = 2(B) - (-1)(-1) = 4 - 1 = 3 \)
- For \( \hat{j} \): \( \begin{vmatrix} 1 & -1
3 & 2 \end{vmatrix} = 1(B) - (-1)(3) = 2 + 3 = 5 \)
- For \( \hat{k} \): \( \begin{vmatrix} 1 & 2
3 & -1 \end{vmatrix} = 1(-1) - 2(3) = -1 - 6 = -7 \)
Thus, the cross product is:
\[
\mathbf{A} \times \mathbf{B} = 3\hat{i} - 5\hat{j} - 7\hat{k}
\]
Step 2: Normalize the cross product.
To find the unit vector, we first compute the magnitude of the cross product:
\[
|\mathbf{A} \times \mathbf{B}| = \sqrt{3^2 + (-5)^2 + (-7)^2} = \sqrt{9 + 25 + 49} = \sqrt{83}
\]
Now, divide the components of the cross product by the magnitude to obtain the unit vector:
\[
\hat{v} = \frac{1}{\sqrt{83}} \left( 3\hat{i} - 5\hat{j} - 7\hat{k} \right)
\]
Thus, the scalar components of the unit vector are:
\[
\left( \frac{-3}{\sqrt{83}}, \frac{-5}{\sqrt{83}}, \frac{-7}{\sqrt{83}} \right)
\]
Therefore, the correct answer is option (C)