Question:

The scalar components of a unit vector which is perpendicular to each of the vectors \( \hat{i} + 2\hat{j} - \hat{k} \) and \( 3\hat{i} - \hat{j} + 2\hat{k} \) are:

Show Hint

To find a unit vector perpendicular to two vectors, compute the cross product of the vectors and then normalize the result by dividing each component by the magnitude of the cross product.
Updated On: May 8, 2025
  • \( \left( \frac{-3}{\sqrt{83}}, \frac{-5}{\sqrt{83}}, \frac{7}{\sqrt{83}} \right) \)
  • \( (-3, -5, 7) \)
  • \( \left( \frac{-3}{\sqrt{83}}, \frac{-5}{\sqrt{83}}, \frac{-7}{\sqrt{83}} \right) \)
  • \( (3, -5, -7) \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

We are asked to find the scalar components of a unit vector that is perpendicular to both of the given vectors: - \( \mathbf{A} = \hat{i} + 2\hat{j} - \hat{k} \) - \( \mathbf{B} = 3\hat{i} - \hat{j} + 2\hat{k} \) To find a vector that is perpendicular to both, we take the cross product of \( \mathbf{A} \) and \( \mathbf{B} \). Step 1: Compute the cross product \( \mathbf{A} \times \mathbf{B} \). The cross product of \( \mathbf{A} \) and \( \mathbf{B} \) is given by the determinant: \[ \mathbf{A} \times \mathbf{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k}
1 & 2 & -1
3 & -1 & 2 \end{vmatrix} \] Expanding the determinant: \[ \mathbf{A} \times \mathbf{B} = \hat{i} \begin{vmatrix} 2 & -1
-1 & 2 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & -1
3 & 2 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 2
3 & -1 \end{vmatrix} \] Now, compute each 2x2 determinant: - For \( \hat{i} \): \( \begin{vmatrix} 2 & -1
-1 & 2 \end{vmatrix} = 2(B) - (-1)(-1) = 4 - 1 = 3 \) - For \( \hat{j} \): \( \begin{vmatrix} 1 & -1
3 & 2 \end{vmatrix} = 1(B) - (-1)(3) = 2 + 3 = 5 \) - For \( \hat{k} \): \( \begin{vmatrix} 1 & 2
3 & -1 \end{vmatrix} = 1(-1) - 2(3) = -1 - 6 = -7 \) Thus, the cross product is: \[ \mathbf{A} \times \mathbf{B} = 3\hat{i} - 5\hat{j} - 7\hat{k} \] Step 2: Normalize the cross product. To find the unit vector, we first compute the magnitude of the cross product: \[ |\mathbf{A} \times \mathbf{B}| = \sqrt{3^2 + (-5)^2 + (-7)^2} = \sqrt{9 + 25 + 49} = \sqrt{83} \] Now, divide the components of the cross product by the magnitude to obtain the unit vector: \[ \hat{v} = \frac{1}{\sqrt{83}} \left( 3\hat{i} - 5\hat{j} - 7\hat{k} \right) \] Thus, the scalar components of the unit vector are: \[ \left( \frac{-3}{\sqrt{83}}, \frac{-5}{\sqrt{83}}, \frac{-7}{\sqrt{83}} \right) \] Therefore, the correct answer is option (C)
Was this answer helpful?
0
0

Top Questions on Vectors

View More Questions