Question:

The roots of the quadratic equation \( px^2 - qx + r = 0, \, p \neq 0 \) are:

Show Hint

The quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] is used to find roots of any quadratic equation.
Updated On: Oct 27, 2025
  • \( \frac{q \pm \sqrt{q^2 - 4pr}}{2p} \)
  • \( \frac{q \pm \sqrt{q^2 + 4pr}}{2p} \)
  • \( \frac{-q \pm \sqrt{q^2 - 4pr}}{2p} \)
  • \( \frac{-q \pm \sqrt{q^2 + 4pr}}{2p} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Using the quadratic formula:
\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] For \( px^2 - qx + r = 0 \): \[ x = \frac{-(-q) \pm \sqrt{(-q)^2 - 4(p)(r)}}{2p} \] \[ x = \frac{q \pm \sqrt{q^2 - 4pr}}{2p} \]
Was this answer helpful?
0
0

Questions Asked in Bihar Class X Board exam

View More Questions