From the given equation, we have: $\alpha + \beta = -\frac{\lambda}{3}$ $\alpha\beta = -\frac{1}{3}$
Now, we can use the given condition: $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = 15 \implies \frac{\alpha^2 + \beta^2}{\alpha^2\beta^2} = 15$
Substituting $\alpha\beta = -\frac{1}{3}$, we get: $\alpha^2 + \beta^2 = -5$
We know that: $(\alpha + \beta)^3 = \alpha^3 + \beta^3 + 3\alpha\beta(\alpha + \beta)$
Substituting the values of $\alpha + \beta$ and $\alpha\beta$, we get: $(-\frac{\lambda}{3})^3 = \alpha^3 + \beta^3 + 3(-\frac{1}{3})(-\frac{\lambda}{3})$
Simplifying, we get: $\alpha^3 + \beta^3 = -\frac{\lambda^3}{27} + \frac{\lambda}{9}$
Now, we need to find the value of λ. We can use the identity: $(\alpha + \beta)^2 = \alpha^2 + \beta^2 + 2\alpha\beta$
Substituting the values, we get: $(-\frac{\lambda}{3})^2 = -5 + 2(-\frac{1}{3})$
Solving for λ, we get $\lambda = \pm 3\sqrt{2}$.
Substituting the value of λ in the expression for $\alpha^3 + \beta^3$, we get: $(\alpha^3 + \beta^3)^2 = 4$
Therefore, the value of $(\alpha^3 + \beta^3)^2$ is 4.
Match List I with List II :
| List I (Quadratic equations) | List II (Roots) |
|---|---|
| (A) \(12x^2 - 7x + 1 = 0\) | (I) \((-13, -4)\) |
| (B) \(20x^2 - 9x + 1 = 0\) | (II) \(\left(\frac{1}{3}, \frac{1}{4}\right)\) |
| (C) \(x^2 + 17x + 52 = 0\) | (III) \((-4, -\frac{3}{2})\) |
| (D) \(2x^2 + 11x + 12 = 0\) | (IV) \(\left(\frac{1}{5}, \frac{1}{4}\right)\) |
Choose the correct answer from the options given below :
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: