Given:
- RMS value of the electric field, \( E_{rms} = 660 \, \text{N/C} \)
- We need to find the average energy density \( u \) of the electromagnetic wave.
Step 1: Relation between electric field and energy density:
The average energy density of an electromagnetic wave is given by:
\[
u = \frac{\varepsilon_0 E_{rms}^2}{2}
\]
where \( \varepsilon_0 = 8.854 \times 10^{-12} \, \text{F/m} \) (permittivity of free space).
Step 2: Substitute the values:
\[
u = \frac{8.854 \times 10^{-12} \times (660)^2}{2} = \frac{8.854 \times 10^{-12} \times 435,600}{2}
\]
\[
= \frac{3.854 \times 10^{-6}}{2} = 3.854 \times 10^{-6} \, \text{J/m}^3
\]
Step 3: Rounding the answer:
\[
u \approx 3.85 \times 10^{-6} \, \text{J/m}^3
\]
Therefore, the average energy density of the electromagnetic wave is:
\[
\boxed{3.85 \times 10^{-6} \, \text{J/m}^3}
\]