To determine whether the relation is an equivalence relation, we check if it is reflexive, symmetric, and transitive.
Step 1: Check if the relation is reflexive by checking if \( x + x \) is even for all integers \( x \).
Step 2: Check if the relation is symmetric by ensuring if \( x + y \) is even, then \( y + x \) is also even.
Step 3: Check if the relation is transitive by verifying that if \( x + y \) and \( y + z \) are even, then \( x + z \) is also even.
Final Conclusion: The relation is an equivalence relation, which is Option 4.
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: