To determine whether the relation is an equivalence relation, we check if it is reflexive, symmetric, and transitive.
Step 1: Check if the relation is reflexive by checking if \( x + x \) is even for all integers \( x \).
Step 2: Check if the relation is symmetric by ensuring if \( x + y \) is even, then \( y + x \) is also even.
Step 3: Check if the relation is transitive by verifying that if \( x + y \) and \( y + z \) are even, then \( x + z \) is also even.
Final Conclusion: The relation is an equivalence relation, which is Option 4.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: