To determine whether the relation is an equivalence relation, we check if it is reflexive, symmetric, and transitive.
Step 1: Check if the relation is reflexive by checking if \( x + x \) is even for all integers \( x \).
Step 2: Check if the relation is symmetric by ensuring if \( x + y \) is even, then \( y + x \) is also even.
Step 3: Check if the relation is transitive by verifying that if \( x + y \) and \( y + z \) are even, then \( x + z \) is also even.
Final Conclusion: The relation is an equivalence relation, which is Option 4.
Let $ A = \{0, 1, 2, 3, 4, 5, 6\} $ and $ R_1 = \{(x, y): \max(x, y) \in \{3, 4 \}$. Consider the two statements:
Statement 1: Total number of elements in $ R_1 $ is 18.
Statement 2: $ R $ is symmetric but not reflexive and transitive.