To determine whether the relation is an equivalence relation, we check if it is reflexive, symmetric, and transitive.
Step 1: Check if the relation is reflexive by checking if \( x + x \) is even for all integers \( x \).
Step 2: Check if the relation is symmetric by ensuring if \( x + y \) is even, then \( y + x \) is also even.
Step 3: Check if the relation is transitive by verifying that if \( x + y \) and \( y + z \) are even, then \( x + z \) is also even.
Final Conclusion: The relation is an equivalence relation, which is Option 4.
A relation R is defined in the set N as follows:
R = (x, y) : x = y - 3, y > 3
Then, which of the following is correct?
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
