Step 1: Find the Z-transform of \( x(n) \). Since \( x(n) = \delta(n - k) \), its Z-transform is: \[ X(z) = z^{-k}. \]
Step 2: Find the ROC. - The function \( z^{-k} \) is well-defined for all \( z \neq 0 \). - So, the ROC is entire \( z \)-plane except \( z = 0 \).
Step 3: Selecting the correct option. Since the correct ROC is entire \( z \)-plane except at \( z = 0 \), the answer is (C).
A closed-loop system has the characteristic equation given by: $ s^3 + k s^2 + (k+2) s + 3 = 0 $.
For the system to be stable, the value of $ k $ is:
A digital filter with impulse response $ h[n] = 2^n u[n] $ will have a transfer function with a region of convergence.