For $\delta_\text{min}$:
\[ i = e \quad \text{and} \quad r_1 = r_2 = \frac{A}{2} \]
\[ \delta_\text{min} = 2i - A \]
Given, $\frac{\delta_\text{min}}{A} = 1$:
\[ \frac{2i - A}{A} = 1 \]
Simplifying:
\[ 2i - A = A \implies 2i = 2A \implies i = A \]
Using Snell's law:
\[ 1 \cdot \sin i = \mu \cdot \sin r \implies \sin i = \mu \cdot \sin \left(\frac{A}{2}\right) \]
Substituting $i = A$:
\[ \sin A = \mu \cdot \sin \left(\frac{A}{2}\right) \]
Expanding $\sin A$:
\[ 2 \sin \frac{A}{2} \cos \frac{A}{2} = \sqrt{3} \cdot \sin \frac{A}{2} \]
Dividing by $\sin \frac{A}{2}$:
\[ 2 \cos \frac{A}{2} = \sqrt{3} \implies \cos \frac{A}{2} = \frac{\sqrt{3}}{2} \]
\[ \frac{A}{2} = 30^\circ \implies A = 60^\circ \]