For $\delta_\text{min}$:
\[ i = e \quad \text{and} \quad r_1 = r_2 = \frac{A}{2} \]
\[ \delta_\text{min} = 2i - A \]
Given, $\frac{\delta_\text{min}}{A} = 1$:
\[ \frac{2i - A}{A} = 1 \]
Simplifying:
\[ 2i - A = A \implies 2i = 2A \implies i = A \]
Using Snell's law:
\[ 1 \cdot \sin i = \mu \cdot \sin r \implies \sin i = \mu \cdot \sin \left(\frac{A}{2}\right) \]
Substituting $i = A$:
\[ \sin A = \mu \cdot \sin \left(\frac{A}{2}\right) \]
Expanding $\sin A$:
\[ 2 \sin \frac{A}{2} \cos \frac{A}{2} = \sqrt{3} \cdot \sin \frac{A}{2} \]
Dividing by $\sin \frac{A}{2}$:
\[ 2 \cos \frac{A}{2} = \sqrt{3} \implies \cos \frac{A}{2} = \frac{\sqrt{3}}{2} \]
\[ \frac{A}{2} = 30^\circ \implies A = 60^\circ \]
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).