Step 1: Use the formula for shortest wavelength in any series:
\[
\frac{1}{\lambda_{\text{min}}} = R \left(1 - \frac{1}{n^2}\right)
\]
where \( n \) is the principal quantum number of the lower energy level of the series.
Step 2: For Balmer series, \( n = 2 \)
\[
\frac{1}{\lambda_B} = R \left(1 - \frac{1}{2^2}\right) = R \left(\frac{3}{4}\right)
\]
Step 3: For Brackett series, \( n = 4 \)
\[
\frac{1}{\lambda_{Br}} = R \left(1 - \frac{1}{4^2}\right) = R \left(\frac{15}{16}\right)
\]
Step 4: Take ratio of wavelengths (remember it's inverse of above)
\[
\frac{\lambda_{Br}}{\lambda_B} = \frac{\frac{4}{3}}{\frac{16}{15}} = \frac{4}{3} . \frac{15}{16} = \frac{5}{4}
\Rightarrow \lambda_B : \lambda_{Br} = 1 : 4
\Rightarrow \lambda_{Br} : \lambda_B = 4 : 1
\]