For simple harmonic motion, the displacement \( x \) is given by: \[ x = a \sin 2 \pi f t \] The velocity \( v \) is the time derivative of displacement: \[ v = \frac{d}{dt} (a \sin 2 \pi f t) = 2 \pi f a \cos 2 \pi f t \] The maximum velocity \( v_{\text{max}} \) occurs when \( \cos 2 \pi f t = 1 \), so: \[ v_{\text{max}} = 2 \pi f a \] The acceleration \( a \) is the time derivative of velocity: \[ a = \frac{d}{dt} (2 \pi f a \cos 2 \pi f t) = - (2 \pi f)^2 a \sin 2 \pi f t \] The maximum acceleration \( a_{\text{max}} \) occurs when \( \sin 2 \pi f t = 1 \), so: \[ a_{\text{max}} = (2 \pi f)^2 a \] The ratio of maximum acceleration to maximum velocity is: \[ \frac{a_{\text{max}}}{v_{\text{max}}} = \frac{(2 \pi f)^2 a}{2 \pi f a} = 2 \pi f \] Thus, the correct ratio is infinity, as \( \frac{a_{\text{max}}}{v_{\text{max}}} \) tends to infinity when the frequency \( f \) increases.
The correct option is (D) : infinity
Given the equation of simple harmonic motion:
\( x = a \sin(2\pi f t) \)
To find the ratio of maximum acceleration to maximum velocity:
Velocity is given by:
\( v = \frac{dx}{dt} = a \cdot 2\pi f \cdot \cos(2\pi f t) \)
So, maximum velocity is:
\( v_{\text{max}} = a \cdot 2\pi f \)
Acceleration is given by:
\( a = \frac{d^2x}{dt^2} = -a \cdot (2\pi f)^2 \cdot \sin(2\pi f t) \)
So, maximum acceleration is:
\( a_{\text{max}} = a \cdot (2\pi f)^2 \)
Now, the required ratio is:
$$ \frac{a_{\text{max}}}{v_{\text{max}}} = \frac{a (2\pi f)^2}{a \cdot 2\pi f} = 2\pi f $$
Thus, the correct ratio is infinity, as \( \frac{a_{\text{max}}}{v_{\text{max}}} \) tends to infinity when the frequency \( f \) increases.