Let $L =$ Angular momentum of earth about sun.
$M =$ Mass of earth
$\therefore$ By Keplers law, $\frac{dA}{dt} = \frac{L}{2M}$
or $dA = \frac{L}{2M} dt$
The earth completes its orbital journey in $365$ days.
$\therefore$ Area $A = \frac{L}{2M}\times T = \frac{1}{2}\left(\frac{L}{M}\right)T$, where $T = 365$ days.
or $A = \frac{\left(4.4 \times 10^{15}\right)\times 365 \times 24\times 60\times 60}{2} m^{2}$
or Area $= 6.94 \times 10^{22}\, m^{2} $
$\therefore$ Area enclosed by earths orbit $= 6.94 \times 10^{22}\, m^{2}$