Using the Arrhenius equation: \(\ln\left(\frac{k_2}{k_1}\right) = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)\), where \(k_1 = 0.02 \, \text{s}^{-1}\) at \(T_1 = 500 \, \text{K}\), \(k_2 = 0.2 \, \text{s}^{-1}\) at \(T_2 = 700 \, \text{K}\), and \(R = 0.0083 \, \text{kJ K}^{-1} \text{mol}^{-1}\). First, calculate:
\[
\ln\left(\frac{0.2}{0.02}\right) = \ln(10) \approx 2.303
\]
\[
\frac{1}{T_1} - \frac{1}{T_2} = \frac{1}{500} - \frac{1}{700} = \frac{1}{1750}
\]
Substitute:
\[
2.303 = \frac{E_a}{0.0083} \times \frac{1}{1750}
\]
\[
E_a = 2.303 \times 1750 \times 0.0083 \approx 33.45 \, \text{kJ mol}^{-1}
\]
This matches option 2.
Thus, the correct answer is 33.45.