We can calculate the rate constant at 350 K using the Arrhenius equation:
k2=k1exp(R−Ea(T21−T11))
where:
-
k1 is the rate constant at temperature
T1 (298 K),
-
k2 is the rate constant at temperature
T2 (350 K),
-
Ea is the activation energy,
-
R is the universal gas constant (8.314 J/mol·K),
-
T1 and
T2 are the temperatures in Kelvin.
Step 1:
Given:
-
k1=3.46×103s−1,
-
Ea=50.1kJ/mol=50100J/mol,
-
T1=298K,
-
T2=350K,
-
R=8.314J/mol⋅K.
Step 2:
Substitute the values into the Arrhenius equation:
k2=3.46×103exp(8.314−50100(3501−2981)).
Step 3:
Calculate the exponent:
3501−2981=−0.000231,
8.314−50100=−6026.66,
k2=3.46×103exp(6026.66×0.000231)=3.46×103×exp(1.39).
Step 4:
Now, calculate the final rate constant:
k2=3.46×103×4.01=0.692s−1.
Thus, the rate constant at 350 K is
0.692s−1.