Question:

The rate constant of a first-order reaction is 3.46×103s1 3.46 \times 10^3 \, {s}^{-1} at 298K. What is the rate constant of the reaction at 350 K if its activation energy is 50.1 kJ mol1^{-1} (R = 8.314 J K1^{-1} mol1^{-1})?

Show Hint

Use the Arrhenius equation to calculate the rate constant at a new temperature by substituting the given activation energy, temperatures, and rate constants.
Updated On: Mar 25, 2025
  • 0.592 s1^{-1}
  • 0.692 s1^{-1}
  • 0.792 s1^{-1}
  • 0.892 s1^{-1}
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

We can calculate the rate constant at 350 K using the Arrhenius equation: k2=k1exp(EaR(1T21T1)) k_2 = k_1 \exp \left( \frac{-E_a}{R} \left( \frac{1}{T_2} - \frac{1}{T_1} \right) \right) where: - k1 k_1 is the rate constant at temperature T1 T_1 (298 K),
- k2 k_2 is the rate constant at temperature T2 T_2 (350 K),
- Ea E_a is the activation energy,
- R R is the universal gas constant (8.314 J/mol·K),
- T1 T_1 and T2 T_2 are the temperatures in Kelvin.
Step 1:
Given: - k1=3.46×103s1 k_1 = 3.46 \times 10^3 \, {s}^{-1} ,
- Ea=50.1kJ/mol=50100J/mol E_a = 50.1 \, {kJ/mol} = 50100 \, {J/mol} ,
- T1=298K T_1 = 298 \, {K} ,
- T2=350K T_2 = 350 \, {K} ,
- R=8.314J/molK R = 8.314 \, {J/mol·K} .
Step 2:
Substitute the values into the Arrhenius equation: k2=3.46×103exp(501008.314(13501298)). k_2 = 3.46 \times 10^3 \exp \left( \frac{-50100}{8.314} \left( \frac{1}{350} - \frac{1}{298} \right) \right). Step 3:
Calculate the exponent: 13501298=0.000231, \frac{1}{350} - \frac{1}{298} = -0.000231, 501008.314=6026.66, \frac{-50100}{8.314} = -6026.66, k2=3.46×103exp(6026.66×0.000231)=3.46×103×exp(1.39). k_2 = 3.46 \times 10^3 \exp \left( 6026.66 \times 0.000231 \right) = 3.46 \times 10^3 \times \exp(1.39). Step 4:
Now, calculate the final rate constant: k2=3.46×103×4.01=0.692s1. k_2 = 3.46 \times 10^3 \times 4.01 = 0.692 \, {s}^{-1}. Thus, the rate constant at 350 K is 0.692s1 0.692 \, {s}^{-1} .
Was this answer helpful?
0
0