To find the rate constant at 350 K for a reaction with activation energy 50.1 kJ mol\(^{-1}\), we use the Arrhenius equation:
\( k = A e^{-\frac{E_a}{RT}} \)
In this expression:
For comparing rate constants at two different temperatures (\(T_1\) and \(T_2\)), the equation is:
\( \ln \left( \frac{k_2}{k_1} \right) = \frac{-E_a}{R} \left( \frac{1}{T_2} - \frac{1}{T_1} \right) \)
Given:
Substitute these values into the equation:
\( \ln \left( \frac{k_2}{3.46 \times 10^3} \right) = \frac{-50.1 \times 10^3}{8.314} \left( \frac{1}{350} - \frac{1}{298} \right) \)
Calculate the terms:
\( \ln \left( \frac{k_2}{3.46 \times 10^3} \right) = \frac{-50.1 \times 10^3}{8.314} \times (-0.000476) \approx 2.013 \)
Solve for \(k_2\):
\( \frac{k_2}{3.46 \times 10^3} \approx e^{2.013} \approx 7.49 \)
Thus,
\( k_2 \approx 7.49 \times 3.46 \times 10^3 \approx 0.692 \, \text{s}^{-1} \)
The rate constant at 350 K is 0.692 s\(^{-1}\).
Observe the following reactions:
\( AB(g) + 25 H_2O(l) \rightarrow AB(H_2S{O_4}) \quad \Delta H = x \, {kJ/mol}^{-1} \)
\( AB(g) + 50 H_2O(l) \rightarrow AB(H_2SO_4) \quad \Delta H = y \, {kJ/mol}^{-1} \)
The enthalpy of dilution, \( \Delta H_{dil} \) in kJ/mol\(^{-1}\), is:
Kc for the reaction \[ A(g) \rightleftharpoons T(K) + B(g) \] is 39.0. In a closed one-litre flask, one mole of \( A(g) \) was heated to \( T(K) \). What are the concentrations of \( A(g) \) and \( B(g) \) (in mol L\(^{-1}\)) respectively at equilibrium?
Choose the correct combinations based on their Taxonomical features
Match the following