To determine the average force acting on the soccer ball during the collision, we need to calculate the change in momentum and then use the impulse
-momentum theorem. Given:
- Mass of the ball, \( m = 250 \, \text{g} = 0.25 \, \text{kg} \)
- Initial velocity, \( \vec{v}_i = -22 \, \text{m/s} \) (to the left)
- Final velocity, \( \vec{v}_f = 30 \, \text{m/s} \) at \( 53^\circ \) above the horizontal to the right
- Time of collision, \( \Delta t = 0.01 \, \text{s} \) Step 1: Resolve the Final Velocity into Components The final velocity \( \vec{v}_f \) can be resolved into horizontal (\( v_{fx} \)) and vertical (\( v_{fy} \)) components: \[ v_{fx} = 30 \cos 53^\circ \] \[ v_{fy} = 30 \sin 53^\circ \] Using trigonometric values: \[ \cos 53^\circ \approx 0.6 \quad \text{and} \quad \sin 53^\circ \approx 0.8 \] Thus: \[ v_{fx} = 30 \times 0.6 = 18 \, \text{m/s} \] \[ v_{fy} = 30 \times 0.8 = 24 \, \text{m/s} \] Step 2: Calculate the Change in Momentum The initial momentum \( \vec{p}_i \) and final momentum \( \vec{p}_f \) are: \[ \vec{p}_i = m \vec{v}_i = 0.25 \times (-22) = -5.5 \, \text{kg} \cdot \text{m/s} \] \[ \vec{p}_f = m \vec{v}_f = 0.25 \times (18 \hat{i} + 24 \hat{j}) = 4.5 \hat{i} + 6 \hat{j} \, \text{kg} \cdot \text{m/s} \] The change in momentum \( \Delta \vec{p} \) is: \[ \Delta \vec{p} = \vec{p}_f - \vec{p}_i = (4.5 \hat{i} + 6 \hat{j}) - (-5.5 \hat{i}) = 10 \hat{i} + 6 \hat{j} \, \text{kg} \cdot \text{m/s} \] Step 3: Calculate the Magnitude of the Change in Momentum \[ |\Delta \vec{p}| = \sqrt{10^2 + 6^2} = \sqrt{100 + 36} = \sqrt{136} \approx 11.66 \, \text{kg} \cdot \text{m/s} \] Step 4: Calculate the Average Force Using the impulse-momentum theorem: \[ \vec{F}_{\text{avg}} = \frac{\Delta \vec{p}}{\Delta t} = \frac{11.66}{0.01} = 1166 \, \text{N} \] Final Answer: \[ \boxed{1166 \, \text{N}} \] This corresponds to option (3).
Arrange the following in increasing order of their pK\(_b\) values.
What is Z in the following set of reactions?
Acetophenone can be prepared from which of the following reactants?
What are \(X\) and \(Y\) in the following reactions?
What are \(X\) and \(Y\) respectively in the following reaction?