We know:
\[
\cos^{-1}(-x) = \pi - \cos^{-1}(x), \quad \sin^{-1}(-x) = -\sin^{-1}(x)
\]
So the function becomes:
\[
f(x) = \pi - \cos^{-1}(x) - \sin^{-1}(x) + \csc^{-1}(x)
\]
Using the identity:
\[
\cos^{-1}(x) + \sin^{-1}(x) = \dfrac{\pi}{2} \Rightarrow f(x) = \pi - \dfrac{\pi}{2} + \csc^{-1}(x) = \dfrac{\pi}{2} + \csc^{-1}(x)
\]
Now \( \csc^{-1}(x) \in \left[ -\dfrac{\pi}{2}, \dfrac{\pi}{2} \right] \setminus \{ 0 \} \), but domain excludes \( -1 < x < 1 \)
Hence, range of \( f(x) \) is:
\[
f(x) = \dfrac{\pi}{2} + \csc^{-1}(x)
\]
For \( x = \pm 1 \Rightarrow \csc^{-1}(x) = \pm \dfrac{\pi}{2} \), then:
\[
f(x) = \dfrac{\pi}{2} + \left( \pm \dfrac{\pi}{2} \right) = 0 \quad \text{or} \quad \pi
\]
Thus, range is \( \left\{ 0, \pi \right\} \)