From the question given function is:
\[
f(x) = \sin^{-1}(x - \sqrt{x}).
\]
Step 1: Analyze \( g(x) = x - \sqrt{x} \)
The domain of \( x \) is restricted to \( [0, 1] \).
Define:
\[
g(x) = x - \sqrt{x}.
\]
Now, compute the derivative of \( g(x) \):
\[
g'(x) = 1 - \frac{1}{2\sqrt{x}}.
\]
To find the critical points, set \( g'(x) = 0 \):
\[
1 - \frac{1}{2\sqrt{x}} = 0 \implies \sqrt{x} = \frac{1}{2} \implies x = \frac{1}{4}.
\]
Evaluate \( g(x) \) at the critical points:
\[
g(0) = 0, \quad g(1) = 1, \quad g\left(\frac{1}{4}\right) = -\frac{1}{4}.
\]
Thus, the range of \( g(x) \) is:
\[
\left[-\frac{1}{4}, 1\right].
\]
Step 2: Apply \( \sin^{-1} \)
The function \( \sin^{-1}(g(x)) \) maps the range of \( g(x) \) to:
\[
\left[ \sin^{-1}\left(-\frac{1}{4}\right), \sin^{-1}(1) \right].
\]
Substituting the values:
\[
f(x) \in \left[ -\sin^{-1}\left(\frac{1}{4}\right), \frac{\pi}{2} \right].
\]
Therefore, the range of \( f(x) \) is:
\[
\left[ -\sin^{-1}\left(\frac{1}{4}\right), \frac{\pi}{2} \right].
\]
Final Answer:
\[
\boxed{\left[ -\sin^{-1}\left(\frac{1}{4}\right), \frac{\pi}{2} \right]}
\]