Question:

The range of  the function  \( f(x) = \sin^{-1}(x - \sqrt{x}) \) is equal to?

Show Hint

For functions involving inverse trigonometric functions, first determine the range of the inner function, and then map it to the range of the inverse trigonometric function.
Updated On: Mar 29, 2025
  • \( \left[ \sin^{-1}\left(\frac{1}{4}\right), \frac{\pi}{2} \right] \)
  • \( \left[ \sin^{-1}\left(\frac{1}{2}\right), \frac{\pi}{2} \right] \)
  • \( \left[ -\sin^{-1}\left(\frac{1}{4}\right), \frac{\pi}{2} \right] \)
  • \( \left[ -\sin^{-1}\left(\frac{1}{2}\right), \frac{\pi}{2} \right] \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

From the question given function is: \[ f(x) = \sin^{-1}(x - \sqrt{x}). \]
Step 1: Analyze \( g(x) = x - \sqrt{x} \) The domain of \( x \) is restricted to \( [0, 1] \).
Define:
\[ g(x) = x - \sqrt{x}. \]
Now, compute the derivative of \( g(x) \): \[ g'(x) = 1 - \frac{1}{2\sqrt{x}}. \]
To find the critical points, set \( g'(x) = 0 \): \[ 1 - \frac{1}{2\sqrt{x}} = 0 \implies \sqrt{x} = \frac{1}{2} \implies x = \frac{1}{4}. \]
Evaluate \( g(x) \) at the critical points: \[ g(0) = 0, \quad g(1) = 1, \quad g\left(\frac{1}{4}\right) = -\frac{1}{4}. \]
Thus, the range of \( g(x) \) is: \[ \left[-\frac{1}{4}, 1\right]. \] Step 2: Apply \( \sin^{-1} \) The function \( \sin^{-1}(g(x)) \) maps the range of \( g(x) \) to: \[ \left[ \sin^{-1}\left(-\frac{1}{4}\right), \sin^{-1}(1) \right]. \]
Substituting the values: \[ f(x) \in \left[ -\sin^{-1}\left(\frac{1}{4}\right), \frac{\pi}{2} \right]. \]
Therefore, the range of \( f(x) \) is: \[ \left[ -\sin^{-1}\left(\frac{1}{4}\right), \frac{\pi}{2} \right]. \] Final Answer: \[ \boxed{\left[ -\sin^{-1}\left(\frac{1}{4}\right), \frac{\pi}{2} \right]} \]
Was this answer helpful?
0
0