Step 1: Understanding the formula for the volume of a sphere:
The formula for the volume \(V\) of a sphere is given by:
\[
V = \frac{4}{3} \pi r^3
\]
where \(r\) is the radius of the sphere.
Step 2: Substituting the given radius:
We are given that the radius of the sphere is \( r = \frac{7}{2} \) cm. Now, substitute this value into the volume formula:
\[
V = \frac{4}{3} \pi \left( \frac{7}{2} \right)^3
\]
First, calculate \( \left( \frac{7}{2} \right)^3 \):
\[
\left( \frac{7}{2} \right)^3 = \frac{7^3}{2^3} = \frac{343}{8}
\]
Now, substitute this into the volume formula:
\[
V = \frac{4}{3} \pi \times \frac{343}{8}
\]
Simplifying the expression:
\[
V = \frac{4 \times 343}{3 \times 8} \pi = \frac{1372}{24} \pi
\]
Now, simplify \( \frac{1372}{24} \):
\[
\frac{1372}{24} = \frac{343}{6}
\]
Thus, the volume of the sphere is:
\[
V = \frac{343}{6} \pi \, \text{cm}^3
\]
Step 3: Conclusion:
The volume of the sphere is \( \frac{343}{6} \pi \) cubic centimeters.