Step 1: Understanding the problem:
We are given a solid that is in the form of a cylinder with hemispherical ends of the same radii. The total height of the solid is 20 cm, and the diameter of the cylinder is 14 cm. We need to find the surface area of the solid.Step 2: Breaking down the surface area calculation:
The surface area of the solid consists of: 1. The lateral surface area of the cylindrical portion. 2. The surface area of the two hemispherical ends.Step 3: Surface area of the cylindrical portion:
The lateral surface area \( A_{\text{cylinder}} \) of a cylinder is given by the formula: \[ A_{\text{cylinder}} = 2\pi r h_{\text{cylinder}} \] Substitute \( r = 7 \, \text{cm} \) and \( h_{\text{cylinder}} = 6 \, \text{cm} \): \[ A_{\text{cylinder}} = 2 \pi \times 7 \times 6 = 84 \pi \, \text{cm}^2 \]Step 4: Surface area of the hemispherical ends:
The surface area \( A_{\text{hemisphere}} \) of one hemisphere is given by: \[ A_{\text{hemisphere}} = 2\pi r^2 \] Since there are two hemispheres, the total surface area of the hemispherical ends is: \[ A_{\text{total hemispheres}} = 2 \times 2\pi r^2 = 4\pi r^2 \] Substitute \( r = 7 \, \text{cm} \): \[ A_{\text{total hemispheres}} = 4 \pi \times 7^2 = 4 \pi \times 49 = 196 \pi \, \text{cm}^2 \]Step 5: Total surface area of the solid:
The total surface area \( A_{\text{total}} \) of the solid is the sum of the lateral surface area of the cylinder and the surface area of the hemispherical ends: \[ A_{\text{total}} = A_{\text{cylinder}} + A_{\text{total hemispheres}} = 84\pi + 196\pi = 280\pi \, \text{cm}^2 \] Using \( \pi = 3.14 \), we can approximate the total surface area: \[ A_{\text{total}} = 280 \times 3.14 = 879.2 \, \text{cm}^2 \]Step 6: Conclusion:
The surface area of the solid is approximately \( 879.2 \, \text{cm}^2 \).निम्नलिखित विषय पर संकेत बिंदुओं के आधार पर लगभग 120 शब्दों में एक अनुच्छेद लिखिए |
डिजिटल इंडिया
संकेत बिंदु -
डिजिटल इंडिया क्या है
डिजिटल होने के लाभ
सरकार द्वारा उठाए गए कदम