1. Formulas:
Surface Area of a sphere: $A = 4\pi r^2$
Volume of a sphere: $V = \frac{4}{3}\pi r^3$
2. Given information:
Radius: $r = 7$ cm
Error in surface area: $\Delta A = 0.08$ sq.cm
3. Find the relationship between the errors:
We want to find the error in volume ($\Delta V$). To relate $\Delta V$ and $\Delta A$, we can use differentials:
Differentiate the surface area formula: $dA = 8\pi r \, dr$
Differentiate the volume formula: $dV = 4\pi r^2 \, dr$
Now, divide the equation for $dV$ by the equation for $dA$:
$$\frac{dV}{dA} = \frac{4\pi r^2 \, dr}{8\pi r \, dr} = \frac{r}{2}$$
This gives us: $dV = \frac{r}{2} dA$
4. Approximate the error in volume:
We can approximate the differentials $dV$ and $dA$ with the small changes $\Delta V$ and $\Delta A$:
$$\Delta V \approx \frac{r}{2} \Delta A$$
Substitute the given values:
$$\Delta V \approx \frac{7}{2} \cdot 0.08 = 0.28 \text{ cubic cm}$$
Answer: The approximate error in the volume is (1) 0.28 cubic cm.