Step 1: The azimuthal quantum number \( l \) determines the shape of the subshell.
Step 2: For example, \( l = 0 \) corresponds to an \( s \)-orbital (spherical), \( l = 1 \) corresponds to a \( p \)-orbital (dumbbell-shaped), and so on.
Step 3: Thus, the shape of the subshell is determined by the azimuthal quantum number.
List I | List II | ||
A. | \(∇^2\psi+\frac{8\pi^2m}{h^2}(E-V)\psi=0\) | I. | Planck |
B. | \(E=hv\) | II. | Heisenberg |
C. | \(\Delta x.\Delta p≥\frac{h}{4\pi}\) | III. | Schrodinger |
D. | \(\lambda=\frac{h}{p}\) | IV. | de Broglie |
\[ f(x) = \begin{cases} x\left( \frac{\pi}{2} + x \right), & \text{if } x \geq 0 \\ x\left( \frac{\pi}{2} - x \right), & \text{if } x < 0 \end{cases} \]
Then \( f'(-4) \) is equal to:If \( f'(x) = 4x\cos^2(x) \sin\left(\frac{x}{4}\right) \), then \( \lim_{x \to 0} \frac{f(\pi + x) - f(\pi)}{x} \) is equal to:
Let \( f(x) = \frac{x^2 + 40}{7x} \), \( x \neq 0 \), \( x \in [4,5] \). The value of \( c \) in \( [4,5] \) at which \( f'(c) = -\frac{1}{7} \) is equal to:
The general solution of the differential equation \( \frac{dy}{dx} = xy - 2x - 2y + 4 \) is:
\[ \int \frac{4x \cos \left( \sqrt{4x^2 + 7} \right)}{\sqrt{4x^2 + 7}} \, dx \]