The remainder when \( 64^{64} \) is divided by 7 is equal to:
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hooke’s law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Arithmetic Progression (AP) is a mathematical series in which the difference between any two subsequent numbers is a fixed value.
For example, the natural number sequence 1, 2, 3, 4, 5, 6,... is an AP because the difference between two consecutive terms (say 1 and 2) is equal to one (2 -1). Even when dealing with odd and even numbers, the common difference between two consecutive words will be equal to 2.
In simpler words, an arithmetic progression is a collection of integers where each term is resulted by adding a fixed number to the preceding term apart from the first term.
For eg:- 4,6,8,10,12,14,16
We can notice Arithmetic Progression in our day-to-day lives too, for eg:- the number of days in a week, stacking chairs, etc.
Read More: Sum of First N Terms of an AP