Step 1: Given Data
The probability of taking a particular mode of transport:
\[
P(C) = \frac{1}{5}, \quad P(B) = \frac{2}{5}, \quad P(T) = \frac{3}{5}
\]
The probability of reaching late for each mode:
\[
P(L | C) = \frac{2}{7}, \quad P(L | B) = \frac{4}{7}, \quad P(L | T) = \frac{1}{7}
\]
Step 2: Finding Probability of Reaching on Time
\[
P(T) = 1 - P(L)
\]
\[
P(L) = P(C) P(L | C) + P(B) P(L | B) + P(T) P(L | T)
\]
\[
= \left(\frac{1}{5} \times \frac{2}{7} \right) + \left(\frac{2}{5} \times \frac{4}{7} \right) + \left(\frac{3}{5} \times \frac{1}{7} \right)
\]
\[
= \frac{2}{35} + \frac{8}{35} + \frac{3}{35} = \frac{13}{35}
\]
\[
P(\text{on time}) = 1 - \frac{13}{35} = \frac{22}{35}
\]
Step 3: Using Bayes' Theorem
\[
P(C | T) = \frac{P(C) P(T | C)}{P(T)}
\]
\[
= \frac{\left(\frac{1}{5} \times \frac{5}{7}\right)}{\frac{22}{35}}
\]
\[
= \frac{5}{35} \times \frac{35}{29} = \frac{5}{29}
\]
Thus, the correct answer is \( \frac{5}{29} \).