Step 1: Understanding the Concept:
This question tests the knowledge of finding the variance of a discrete random variable given its probability distribution. First, we must find the value of the unknown 'k' using the property that the sum of all probabilities in a distribution is 1. Then, we calculate the mean (Expected Value, \( E[X] \)) and the expectation of the square of the variable (\( E[X^2] \)). Finally, we use the variance formula.
Step 2: Key Formula or Approach:
1. Sum of probabilities: \( \sum P(X_i) = 1 \).
2. Mean (Expected Value): \( E[X] = \mu = \sum X_i P(X_i) \).
3. Expectation of \( X^2 \): \( E[X^2] = \sum X_i^2 P(X_i) \).
4. Variance: \( \text{Var}(X) = \sigma^2 = E[X^2] - (E[X])^2 \).
Step 3: Detailed Explanation:
Find k:
The sum of all probabilities must be 1. \[ 0.2 + k + 2k + 2k = 1 \] \[ 0.2 + 5k = 1 \] \[ 5k = 0.8 \implies k = \frac{0.8}{5} = 0.16 \] Now we can complete the probability distribution table:
X | 0 | 1 | 2 | 3 |
---|---|---|---|---|
P(X) | 0.2 | 0.16 | 0.32 | 0.32 |
Calculate Mean \( E[X] \):
\[ E[X] = (0 \times 0.2) + (1 \times 0.16) + (2 \times 0.32) + (3 \times 0.32) \] \[ E[X] = 0 + 0.16 + 0.64 + 0.96 = 1.76 \]
Calculate \( E[X^2] \):
\[ E[X^2] = (0^2 \times 0.2) + (1^2 \times 0.16) + (2^2 \times 0.32) + (3^2 \times 0.32) \] \[ E[X^2] = (0 \times 0.2) + (1 \times 0.16) + (4 \times 0.32) + (9 \times 0.32) \] \[ E[X^2] = 0 + 0.16 + 1.28 + 2.88 = 4.32 \]
Calculate Variance \( \text{Var}(X) \):
\[ \text{Var}(X) = E[X^2] - (E[X])^2 \] \[ \text{Var}(X) = 4.32 - (1.76)^2 \] \[ \text{Var}(X) = 4.32 - 3.0976 = 1.2224 \]
Convert to Fraction:
Now, let's check the options.
Option (A): \( \frac{764}{625} \).
Let's calculate this value: \( 764 \div 625 = 1.2224 \).
This matches our calculated variance.
Step 4: Final Answer:
The variance of the random variable \( X \) is 1.2224, which is equal to \( \frac{764}{625} \).
The probability distribution of the random variable X is given by
X | 0 | 1 | 2 | 3 |
---|---|---|---|---|
P(X) | 0.2 | k | 2k | 2k |
Find the variance of the random variable \(X\).
'इदम्' शब्दस्य स्त्रीलिङ्गे तृतीया-विभक्तौ बहुवचने कि रूपं भवति ?
'कर्तृ' शब्दस्य एकवचनस्य रूपाणि इमानि विभक्त्यनुसारं क्रमेण व्यवस्थापयत ।
(A) कर्त्रा
(B) कर्त्रे
(C) कर्तुः
(D) कर्तारम्
(E) कर्ता
अधोलिखितेषु विकल्पेषु उचिततमम् उत्तरं चिनुत-
प्रथमां सूचीं द्वितीयया सूच्या सह मेलयत ।
सूची-I | सूची-II |
---|---|
(A) षडाननः | (I) यण्-सन्धिः |
(B) यद्यत्र | (II) व्यञ्जन-सन्धिः |
(C) साधुस्तरति | (III) विसर्ग-सन्धिः |
(D) महौषधम् | (IV) वृद्धि-सन्धिः |
अधोलिखितेषु विकल्पेषु उचिततमम् उत्तरं चिनुत -
'उत्+देशः' इत्यत्र सन्धिं कुरुत ।
'दुष्कृतम्' इत्यस्य सन्धि-विच्छेदं कुरुत ।