Step 1: Write the given equation: The total probability is given as: \[ P(0) + P(1) + P(2) + P(3) + P(4) = 1 \] Substituting the known values: \[ 0.1 + k + 2k + k + 0.1 = 1 \] where \( P(1) = k \), \( P(2) = 2k \), and \( P(3) = k \).
Step 2: Simplify the equation: Combine the terms: \[ 0.2 + 4k = 1 \] Subtract \( 0.2 \) from both sides: \[ 4k = 0.8 \] Divide by \( 4 \) to find \( k \): \[ k = 0.2 = \frac{1}{5} \]
Step 3: Find \( P(2) \): Given \( P(2) = 2k \), substitute the value of \( k \): \[ P(2) = 2 \times \frac{1}{5} = \frac{2}{5} \]
Conclusion: The value of \( P(2) \) is \( \mathbf{\frac{2}{5}} \).
Balance Sheet of Madhavan, Chatterjee and Pillai as at 31st March, 2024
| Liabilities | Amount (₹) | Assets | Amount (₹) |
|---|---|---|---|
| Creditors | 1,10,000 | Cash at Bank | 4,05,000 |
| Outstanding Expenses | 17,000 | Stock | 2,20,000 |
| Mrs. Madhavan’s Loan | 2,00,000 | Debtors | 95,000 |
| Chatterjee’s Loan | 1,70,000 | Less: Provision for Doubtful Debts | (5,000) |
| Capitals: | Madhavan – 2,00,000 | Land and Building | 1,82,000 |
| Chatterjee – 1,00,000 | Plant and Machinery | 1,00,000 | |
| Pillai – 2,00,000 | |||
| Total | 9,97,000 | Total | 9,97,000 |

