Step 1: Understand the bulk modulus formula.
The bulk modulus \( B \) relates the pressure change \( \Delta P \) to the fractional change in volume \( \frac{\Delta V}{V} \) using the following formula:
\[
B = \frac{\Delta P}{\frac{\Delta V}{V}}
\]
Where:
\( B \) is the bulk modulus,
\( \Delta P \) is the pressure change,
\( \frac{\Delta V}{V} \) is the fractional change in volume.
Step 2: Rearrange the formula to solve for \( \Delta P \).
We can solve for \( \Delta P \) by multiplying both sides of the equation by \( \frac{\Delta V}{V} \):
\[
\Delta P = B \times \frac{\Delta V}{V}
\]
Step 3: Substitute the given values into the formula.
Given:
Bulk modulus \( B = 2.2 \times 10^9 \, \text{Nm}^{-2} \),
Fractional change in volume \( \frac{\Delta V}{V} = 0.05% = 0.0005 \).
Substitute these values into the equation for \( \Delta P \):
\[
\Delta P = (2.2 \times 10^9) \times 0.0005
\]
Step 4: Perform the calculation.
\[
\Delta P = 1.1 \times 10^6 \, \text{Nm}^{-2}
\]
Thus, the pressure required to decrease the volume is \( 1.1 \times 10^6 \, \text{Nm}^{-2} \).
% Correct Answer
Correct Answer:} (4) \( 1.1 \times 10^6 \, \text{Nm}^{-2} \)