The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hooke’s law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
It is the rate of flow of electrons in a conductor. SI Unit - Ampere (A).
Electrons are negatively charged particles hence when they move a number of charges moves.
Note:- The ability of a particular substance to conduct electricity depends on the number of electrons that are able to move . Some of the materials allow current to flow better than others.
If a force acts on electrons to make them move in a particular direction, then up to some extent random motion of the electrons will be eliminated. An overall movement in one direction. The force which acts on the electrons to move them in a certain direction is known as electromotive force and its quantity is known as voltage and is measured in V.