To determine the percentage error in the calculation of resistance, we begin with Ohm's law, which states:
\( R = \frac{V}{I} \)
where:
The absolute error in the resistance \( R \) can be determined using the formula for the propagation of relative errors in division:
\( \frac{\Delta R}{R} = \sqrt{\left(\frac{\Delta V}{V}\right)^2 + \left(\frac{\Delta I}{I}\right)^2} \)
Substituting the given values:
Calculate the relative error:
\( \frac{\Delta V}{V} = \frac{0.3}{30} = 0.01 \)
\( \frac{\Delta I}{I} = \frac{0.1}{5} = 0.02 \)
\( \frac{\Delta R}{R} = \sqrt{(0.01)^2 + (0.02)^2} = \sqrt{0.0001 + 0.0004} = \sqrt{0.0005} \)
Converting the absolute error into percentage error:
\( \frac{\Delta R}{R} \times 100 = \sqrt{0.0005} \times 100 \approx 0.02236 \times 100 \approx 2.236\% \)
Therefore, rounding to the appropriate significant figures, the error in the determination of the resistance of the conductor is approximately:
\( 3\% \)
If \( T = 2\pi \sqrt{\frac{L}{g}} \), \( g \) is a constant and the relative error in \( T \) is \( k \) times to the percentage error in \( L \), then \( \frac{1}{k} = \) ?