Question:

The position vector $\vec{r}$ of a particle of mass $m$ is given by the following equation $\vec{r}(t)=\alpha t^{3} \hat{i}+\beta t^{2} \hat{j}$ where $\alpha=\frac{10}{3} \,ms ^{-3}, \beta=5\, ms ^{-2}$ and $m =0.1 \,kg$. At $t =1\, s$, which of the following statement (s) is (are) true about the particle?

Updated On: May 12, 2022
  • The velocity $\overrightarrow{ v }$ is given by $\overrightarrow{ v }=(10 \hat{ i }+10 \hat{ j }) ms ^{-1}$
  • The angular momentum $\overrightarrow{ L }$ with respect to the origin is given by $\overrightarrow{ L }=-\left(\frac{5}{3}\right) \hat{ k } N ms$
  • The force $\overrightarrow{ F }$ is given by $\overrightarrow{ F }=(\hat{ i }+2 \hat{ j }) N$
  • The torque $\vec{\tau}$ with respect to the origin is given by $\vec{\tau}=-\left(\frac{20}{3}\right) \hat{k} Nm$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

$\vec{r}(t)=\alpha t^{3} \hat{i}+\beta t^{2} \hat{j}$
$\alpha=\frac{10}{3} ms ^{-3}, \beta=5\, ms ^{-2}$ and $m =0.1\, kg . t =1\, s$, $\overrightarrow{ v }=3 \alpha t ^{2} \hat{ i }+2 \beta t \hat{ j }$
(A) $(\overrightarrow{ v })_{ r =1}=3 \alpha \hat{ i }+2 \beta \hat{ j }$
$=3 \times \frac{10}{3} \hat{ i }+2 \times 5 \hat{ j }$
$=10 \hat{ i }+10 \hat{ j }$
(B) $\vec{L} =\vec{r} \times \overrightarrow{ P }= m (\overrightarrow{ r } \times \overrightarrow{ v })$
$=0.1\left[\left(\alpha t ^{3} \hat{i}+\beta t ^{2} \hat{ j }\right) \times(10 \hat{ i }+10 \hat{ j })\right] $
$=0.1\left[\left(10 \alpha t ^{3}(\hat{ k })-10 \beta t ^{2}(\hat{ k })\right]\right.$
$=0.1\left[10 \times \frac{10}{3} \times 1 \hat{ k }-10 \times 5(1)^{2} \hat{ k }\right] $
$=0.1\left[\frac{100}{3}-50\right] \hat{ k } $
$=-\frac{5}{3}(\hat{k})$
(C) $\overrightarrow{ F } = m \overrightarrow{ a }= m [6 \alpha t \hat{ i }+2 \beta \hat{ j }] $
$ 0.1\left[6 \times \frac{10}{3} \times 1 \hat{ i }+2 \times 5 \hat{ j }\right] $
$=[2 \hat{ i }+\hat{ j }] $
(D) $ \vec{\tau} =\overrightarrow{ r } \times \overrightarrow{ F } $
$=\left(\alpha t ^{3} \hat{ i }+\beta t ^{2} \hat{ j }\right) \times[2 \hat{ i }+\hat{ j }] $
$=\left(\frac{10}{3} \hat{ i }+5 \hat{ j }\right) \times[2 \hat{ i }+\hat{ j }] $
$=\frac{10}{3} \hat{ k }-10 \hat{ k } $
$=\frac{-20}{3} \hat{ k } $
Was this answer helpful?
0
0

Top Questions on torque

View More Questions

Questions Asked in JEE Advanced exam

View More Questions

Concepts Used:

Torque

Torque is a moment of force. Torque is measured as a force that causeque is also defined as the turning effect of force on the axis of rotation. Torque is chs an object to rotate about an axis and is responsible for the angular acceleration. Characterized with “T”.

How is Torque Calculated?

Torque is calculated as the magnitude of the torque vector T for a torque produced by a given force F

T = F. Sin (θ)

Where,

 r - length of the moment arm,

θ - the angle between the force vector and the moment arm.

Read More: Torque

Types of Torque

Torque is of two types:

  1. Static torque
  2. Dynamic torque