Given:
Population in 2001 (\(P_1\)) = 52,000
Population in 2011 (\(P_2\)) = 76,000
Population in 2021 (\(P_3\)) = 1,20,000
Step 1: The formula for the average growth rate using the geometric mean is:
\[
r = \left( \frac{P_2}{P_1} \times \frac{P_3}{P_2} \right)^{\frac{1}{2}} - 1
\]
Substitute the given values:
\[
r = \left( \frac{76,000}{52,000} \times \frac{1,20,000}{76,000} \right)^{\frac{1}{2}} - 1
\]
\[
r = \left( 1.4615 \times 1.5789 \right)^{\frac{1}{2}} - 1
\]
\[
r = \left( 2.3086 \right)^{\frac{1}{2}} - 1 = 1.519 - 1 = 0.519
\]
Step 2: The estimated population for 2031 can be found using the formula for geometric increase:
\[
P_{{2031}} = P_3 \times (1 + r)^{10}
\]
Substitute the values:
\[
P_{{2031}} = 1,20,000 \times (1 + 0.519)^{10}
\]
\[
P_{{2031}} = 1,20,000 \times (1.519)^{10} = 1,20,000 \times 1.957 = 179,000
\]
Thus, the estimated population of the city for 2031 is 179,000.