Step 1: Converting to polar coordinates.
The polar coordinates \( (r, \theta) \) are related to the cartesian coordinates \( (x, y) \) by:
\[
r = \sqrt{x^2 + y^2}, \quad \theta = \tan^{-1} \left( \frac{y}{x} \right)
\]
For the given point \( (-2, -2) \), we calculate:
\[
r = \sqrt{(-2)^2 + (-2)^2} = \sqrt{8} = 2\sqrt{2}
\]
\[
\theta = \tan^{-1} \left( \frac{-2}{-2} \right) = \frac{5\pi}{4}
\]
Step 2: Conclusion.
Thus, the polar coordinates of the point are \( \left( 2\sqrt{2}, \frac{5\pi}{4} \right) \), which makes option (A) the correct answer.