Step 1: Using the centroid formula Let the points \( A, B, C \) have position vectors \( \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \), respectively. Since \( P \) and \( Q \) are the circumcenter and orthocenter of the triangle, respectively, we can use the following result: \[ \overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \]
Step 2: Using the centroid formula The centroid \( G \) of the triangle is given by: \[ \overrightarrow{PG} = \frac{\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}}{3} \] Thus: \[ \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 3 \overrightarrow{PG} \] Therefore: \[ \overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = 3 \overrightarrow{PG} = \overrightarrow{PQ} \]
Step 3: Conclusion Thus, \( \overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = \overrightarrow{PQ} \), which is the correct option (3).
Let $ A \in \mathbb{R} $ be a matrix of order 3x3 such that $$ \det(A) = -4 \quad \text{and} \quad A + I = \left[ \begin{array}{ccc} 1 & 1 & 1 \\2 & 0 & 1 \\4 & 1 & 2 \end{array} \right] $$ where $ I $ is the identity matrix of order 3. If $ \det( (A + I) \cdot \text{adj}(A + I)) $ is $ 2^m $, then $ m $ is equal to:
A square loop of sides \( a = 1 \, {m} \) is held normally in front of a point charge \( q = 1 \, {C} \). The flux of the electric field through the shaded region is \( \frac{5}{p} \times \frac{1}{\varepsilon_0} \, {Nm}^2/{C} \), where the value of \( p \) is: