Step 1: Using the centroid formula Let the points \( A, B, C \) have position vectors \( \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \), respectively. Since \( P \) and \( Q \) are the circumcenter and orthocenter of the triangle, respectively, we can use the following result: \[ \overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \]
Step 2: Using the centroid formula The centroid \( G \) of the triangle is given by: \[ \overrightarrow{PG} = \frac{\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}}{3} \] Thus: \[ \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 3 \overrightarrow{PG} \] Therefore: \[ \overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = 3 \overrightarrow{PG} = \overrightarrow{PQ} \]
Step 3: Conclusion Thus, \( \overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = \overrightarrow{PQ} \), which is the correct option (3).
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.