Step 1: Using the centroid formula Let the points \( A, B, C \) have position vectors \( \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \), respectively. Since \( P \) and \( Q \) are the circumcenter and orthocenter of the triangle, respectively, we can use the following result: \[ \overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \]
Step 2: Using the centroid formula The centroid \( G \) of the triangle is given by: \[ \overrightarrow{PG} = \frac{\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}}{3} \] Thus: \[ \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 3 \overrightarrow{PG} \] Therefore: \[ \overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = 3 \overrightarrow{PG} = \overrightarrow{PQ} \]
Step 3: Conclusion Thus, \( \overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = \overrightarrow{PQ} \), which is the correct option (3).
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to