Step 1: Using the centroid formula Let the points \( A, B, C \) have position vectors \( \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \), respectively. Since \( P \) and \( Q \) are the circumcenter and orthocenter of the triangle, respectively, we can use the following result: \[ \overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \]
Step 2: Using the centroid formula The centroid \( G \) of the triangle is given by: \[ \overrightarrow{PG} = \frac{\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}}{3} \] Thus: \[ \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 3 \overrightarrow{PG} \] Therefore: \[ \overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = 3 \overrightarrow{PG} = \overrightarrow{PQ} \]
Step 3: Conclusion Thus, \( \overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = \overrightarrow{PQ} \), which is the correct option (3).
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).