The equation of the circle which passes through the points $(1,0),(0,1)$ and $(0,0)$ is $x^{2}+y^{2}-x-y=0$ Given that, the point $(2 k, 3 k)$ is on the circle and form concyclic circle. Then, it satisfies the E (i) $(2 k)^{2}+(3 k)^{2}-(2 k)-(3 k)=0$ $\Rightarrow 4 k^{2}+9 k^{2}-5 k=0$ $\Rightarrow 13 k^{2}-5 k=0$ $\Rightarrow k(13 k-5)=0$ $\Rightarrow k=0$ or $k=\frac{5}{13}$ Hence, $k=\frac{5}{13}$