We are given the curve:
\[
y = x^2 + 4x + 3
\]
And the line:
\[
y = 3x + 2
\]
To find the point on the curve closest to the line, we minimize the square of the perpendicular distance from a point \( (x, y = x^2 + 4x + 3) \) to the line:
\[
\text{Distance} = \frac{|3x - y + 2|}{\sqrt{10}} \Rightarrow \text{Minimize } D^2 = \left( \frac{3x - y + 2}{\sqrt{10}} \right)^2
\]
Substitute \( y = x^2 + 4x + 3 \) into the expression:
\[
3x - (x^2 + 4x + 3) + 2 = 3x - x^2 - 4x - 3 + 2 = -x^2 - x - 1
\Rightarrow D^2 \propto (-x^2 - x - 1)^2
\]
Now minimize:
\[
f(x) = (-x^2 - x - 1)^2
\Rightarrow f(x) = (x^2 + x + 1)^2
\]
Differentiate:
\[
f'(x) = 2(x^2 + x + 1)(2x + 1)
\Rightarrow f'(x) = 0 \Rightarrow x = -\frac{1}{2}
\]
Find \( y = (-\frac{1}{2})^2 + 4(-\frac{1}{2}) + 3 = \frac{1}{4} - 2 + 3 = \frac{5}{4} \)
Thus, the point is \( \boxed{\left( -\frac{1}{2}, \frac{5}{4} \right)} \)