\((2\sqrt{2},4)\)
\((2\sqrt{2},0)\)
\((0,0)\)
\((2,2)\)
The given curve is \( x^{2}=2y.\)
For each value of x,the position of the point will be\((x,\frac{x^{2}}{2}).\)
The distance \(d(x)\)between the points\((x,\frac{x^{2}}{2}).\)and\((0,5)\)is given by,
\(d(x)=\sqrt{(x-0)^{2}+(\frac{x^{2}}{2}-5)^{2}}\)=\(\sqrt{x^{2}+\frac{x^{4}}{4}+25-5x^{2}}\)=\(\sqrt{\frac{x^{4}}{4}-4x^{2}+25}\)
\(∴d'(x)\)\(=\frac{(x^{3}-8x)}{2\sqrt{\frac{x^{4}}{4}-4x^{2}+25}}\)\(=\frac{(x^{3}-8x)}{\sqrt{x^{4}-16x^{2}+100}}\)
Now,\(d'(x)=0⇒x^{3}-8x=0\)
\(⇒x(x^{2}-8)=0\)
\(⇒x=0,\pm2\sqrt{2}\)
\(And,d''(x)=\)\(\frac{\sqrt{x^{4}-16x^{2}+100}(3x^{2}-8)-(x^{3}-8x).\frac{4x3-32x}{2\sqrt{x^{4}-16x^{2}+100}}}{(x^{4}-16x^{2}+100)}\)
\(=\frac{(x^{4}-16x^{2}+100)(3x^{2}-8)-2(x^{3}-8x)(x^{3}-8x)}{(x^{4}-16x^{2}+100)\frac{3}{2}}\)
\(=\frac{(x^{4}-16x^{2}+100)(3x^{2}-8)-2(x^{3}-8x^{2})2}{(x^{4}-16x^{2}+100)\frac{3}{2}}\)
When\(,x=0,then\space d''(x)=\frac{36(-8)}{63}<0.\)
When\(,x=\pm2\sqrt{2},d''(x)>0.\)
By second derivative test,\(d(x)\) is the minimum at \(x=\pm2\sqrt{2}.\)
When\( x=\pm2\sqrt{2},y=\frac{(2\sqrt{2})2}{2}=4.\)
Hence,the point on the curve \(x^{2}=2y\) which is nearest to the point\((0,5)\)is\((\pm2\sqrt{2},4).\)
The correct answer is A
If f (x) = 3x2+15x+5, then the approximate value of f (3.02) is
It is given that at x = 1, the function x4−62x2+ax+9 attains its maximum value, on the interval [0, 2]. Find the value of a.
Find the maximum profit that a company can make, if the profit function is given by p(x) = 41−24x−18x2
What is the Planning Process?