\((2\sqrt{2},4)\)
\((2\sqrt{2},0)\)
\((0,0)\)
\((2,2)\)
The given curve is \( x^{2}=2y.\)
For each value of x,the position of the point will be\((x,\frac{x^{2}}{2}).\)
The distance \(d(x)\)between the points\((x,\frac{x^{2}}{2}).\)and\((0,5)\)is given by,
\(d(x)=\sqrt{(x-0)^{2}+(\frac{x^{2}}{2}-5)^{2}}\)=\(\sqrt{x^{2}+\frac{x^{4}}{4}+25-5x^{2}}\)=\(\sqrt{\frac{x^{4}}{4}-4x^{2}+25}\)
\(∴d'(x)\)\(=\frac{(x^{3}-8x)}{2\sqrt{\frac{x^{4}}{4}-4x^{2}+25}}\)\(=\frac{(x^{3}-8x)}{\sqrt{x^{4}-16x^{2}+100}}\)
Now,\(d'(x)=0⇒x^{3}-8x=0\)
\(⇒x(x^{2}-8)=0\)
\(⇒x=0,\pm2\sqrt{2}\)
\(And,d''(x)=\)\(\frac{\sqrt{x^{4}-16x^{2}+100}(3x^{2}-8)-(x^{3}-8x).\frac{4x3-32x}{2\sqrt{x^{4}-16x^{2}+100}}}{(x^{4}-16x^{2}+100)}\)
\(=\frac{(x^{4}-16x^{2}+100)(3x^{2}-8)-2(x^{3}-8x)(x^{3}-8x)}{(x^{4}-16x^{2}+100)\frac{3}{2}}\)
\(=\frac{(x^{4}-16x^{2}+100)(3x^{2}-8)-2(x^{3}-8x^{2})2}{(x^{4}-16x^{2}+100)\frac{3}{2}}\)
When\(,x=0,then\space d''(x)=\frac{36(-8)}{63}<0.\)
When\(,x=\pm2\sqrt{2},d''(x)>0.\)
By second derivative test,\(d(x)\) is the minimum at \(x=\pm2\sqrt{2}.\)
When\( x=\pm2\sqrt{2},y=\frac{(2\sqrt{2})2}{2}=4.\)
Hence,the point on the curve \(x^{2}=2y\) which is nearest to the point\((0,5)\)is\((\pm2\sqrt{2},4).\)
The correct answer is A
If \( x = a(0 - \sin \theta) \), \( y = a(1 + \cos \theta) \), find \[ \frac{dy}{dx}. \]
Find the least value of ‘a’ for which the function \( f(x) = x^2 + ax + 1 \) is increasing on the interval \( [1, 2] \).
If f (x) = 3x2+15x+5, then the approximate value of f (3.02) is
Derry in On the Face of it is a victim of self-pity. Analyse Derry’s behaviour in the light of the above statement.
"___ how little changes in the environment can have big repercussions" Tishani Doshi in Journey to the End of the Earth gives an awakening call for man. Analyse the theme of the lesson in the light of the above statement.