Step 1: Analyze the overall equilibrium of the truss.
For the truss to be in equilibrium, the sum of horizontal forces, vertical forces, and moments must be zero.
Step 2: Calculate the horizontal and vertical reactions at supports A, L, and K.
\[
\sum F_x = 0 \quad \Rightarrow \quad A_x - 10 \text{ kN} + L_x = 0
\]
\[
\sum F_y = 0 \quad \Rightarrow \quad A_y + L_y + K_y - 10 \text{ kN} = 0
\]
Step 3: Calculate the moments about point A to find \(K_y\).
\[
\sum M_A = 0 \quad \Rightarrow \quad 10 \text{ kN} \times 6 \text{ m} + 10 \text{ kN} \times 1 \text{ m} - K_y \times 7 \text{ m} - L_y \times 6 \text{ m} = 0
\]
Assuming \(L_y = K_y\) for simplicity (since there's no horizontal displacement at K and no other horizontal forces acting between L and K),
\[
70 \text{ kN}\cdot\text{m} = K_y \times 7 \text{ m} + L_y \times 6 \text{ m}
\]
\[
70 = 13K_y \quad \Rightarrow \quad K_y \approx 5.38 \text{ kN}
\]
\[
L_y = 70 - 5.38 \times 7 \div 6 \approx 7.5 \text{ kN}
\]
Step 4: Conclude the support reaction at L.
\[
L_y \approx 7.5 \text{ kN}
\]