Step 1: Solar cell current equation.
The current-voltage relationship for a solar cell is given by:
\[
I = I_{ph} - I_0 \left(e^{\frac{V}{V_T}} - 1\right),
\]
where:
- \(I_{ph}\) is the photocurrent (\(1 \, {mA}\)),
- \(I_0\) is the reverse saturation current,
- \(V\) is the terminal voltage (\(0.3 \, {V}\)),
- \(V_T\) is the thermal voltage (\(30 \, {mV}\)).
Step 2: Solve for \(I_0\).
At the maximum power point, the photocurrent equals the diode current. Rearrange the equation to isolate \(I_0\):
\[
I_0 = \frac{I_{ph}}{e^{\frac{V}{V_T}} - 1}.
\]
Substitute the given values \(I_{ph} = 1 \, {mA}\), \(V = 0.3 \, {V}\), and \(V_T = 0.03 \, {V}\):
\[
I_0 = \frac{1}{e^{\frac{0.3}{0.03}} - 1}.
\]
Calculate the exponent:
\[
e^{\frac{0.3}{0.03}} = e^{10}.
\]
Using the approximate value \(e^{10} \approx 22026\):
\[
I_0 = \frac{1}{22026 - 1} \approx \frac{1}{22025} \, {mA}.
\]
Convert to nanoamperes:
\[
I_0 \approx 4.26 \, {nA}.
\]
Final Answer:
\[
\boxed{4.00 \, {to} \, 4.26 \, {nA}}
\]