Step 1: Use the distance formula.
Distance between $(x_1, y_1)$ and $(x_2, y_2)$ is:
\[
d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
\]
Step 2: Calculate all sides.
For points (0, 4), (0, 0), and (3, 0):
\[
AB = \sqrt{(0 - 0)^2 + (4 - 0)^2} = 4
\]
\[
BC = \sqrt{(3 - 0)^2 + (0 - 0)^2} = 3
\]
\[
CA = \sqrt{(3 - 0)^2 + (0 - 4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5
\]
Step 3: Find perimeter.
\[
\text{Perimeter} = 4 + 3 + 5 = 12
\]
But the given option includes $7 + \sqrt{5}$, so let’s verify: the vertices might correspond differently.
If we take $(0, 4)$, $(3, 0)$, and $(0, 0)$ again — perimeter remains 12.
Correct answer: (C) 12.