Maximize Z = 2x + 3y
We rewrite the constraints as equalities to determine their boundary lines:
These constraints, along with x ≥ 0 and y ≥ 0, define the feasible region.
We determine the vertices by solving the equations pairwise.
Solving:
Vertex: (40/13, 15/13)
Solving:
Vertex: (4/3, 4/3)
Solving:
Vertex: (5/7, 18/7)
The maximum value of Z = 64/7 occurs at the vertex (5/7, 18/7).
Assertion (A): The shaded portion of the graph represents the feasible region for the given Linear Programming Problem (LPP).
Reason (R): The region representing \( Z = 50x + 70y \) such that \( Z < 380 \) does not have any point common with the feasible region.
For a Linear Programming Problem, find min \( Z = 5x + 3y \) (where \( Z \) is the objective function) for the feasible region shaded in the given figure. 
The sum of the payoffs to the players in the Nash equilibrium of the following simultaneous game is ............
| Player Y | ||
|---|---|---|
| C | NC | |
| Player X | X: 50, Y: 50 | X: 40, Y: 30 |
| X: 30, Y: 40 | X: 20, Y: 20 | |