Step 1: Determine the oxidation state of the central metal ion in each complex.
\( [Fe(CN)_6]^{3-} \): Let the oxidation state of Fe be \( x \). The charge of \( CN^- \) is -1.
\( x + 6(-1) = -3 \)
\( x - 6 = -3 \)
\( x = +3 \)
Electronic configuration of \( Fe^{3+} \) (\( d^5 \)): \( [Ar] 3d^5 \)
\( [FeF_6]^{3-} \): Let the oxidation state of Fe be \( x \). The charge of \( F^- \) is -1.
\( x + 6(-1) = -3 \)
\( x - 6 = -3 \)
\( x = +3 \)
Electronic configuration of \( Fe^{3+} \) (\( d^5 \)): \( [Ar] 3d^5 \)
\( [CoF_6]^{3-} \): Let the oxidation state of Co be \( x \). The charge of \( F^- \) is -1.
\( x + 6(-1) = -3 \)
\( x - 6 = -3 \)
\( x = +3 \)
Electronic configuration of \( Co^{3+} \) (\( d^6 \)): \( [Ar] 3d^6 \)
\( [Mn(CN)_6]^{3-} \): Let the oxidation state of Mn be \( x \). The charge of \( CN^- \) is -1.
\( x + 6(-1) = -3 \)
\( x - 6 = -3 \)
\( x = +3 \)
Electronic configuration of \( Mn^{3+} \) (\( d^4 \)): \( [Ar] 3d^4 \)
Step 2: Determine the number of unpaired electrons using Crystal Field Theory.
\( [Fe(CN)_6]^{3-} \): \( CN^- \) is a strong field ligand, causing large crystal field splitting (\( \Delta_o>P \)). The \( d^5 \) electrons will pair up in the lower \( t_{2g} \) orbitals.
\( t_{2g}^5 e_g^0 \) (Unpaired electrons = 1)
\( [FeF_6]^{3-} \): \( F^- \) is a weak field ligand, causing small crystal field splitting (\( \Delta_o<P \)). The \( d^5 \) electrons will follow Hund's rule and occupy the orbitals singly before pairing.
\( t_{2g}^3 e_g^2 \) (Unpaired electrons = 5)
\( [CoF_6]^{3-} \): \( F^- \) is a weak field ligand. The \( d^6 \) electrons will be arranged as:
\( t_{2g}^4 e_g^2 \) (Unpaired electrons = 4)
\( [Mn(CN)_6]^{3-} \): \( CN^- \) is a strong field ligand. The \( d^4 \) electrons will pair up in the lower \( t_{2g} \) orbitals.
\( t_{2g}^4 e_g^0 \) (Unpaired electrons = 2)
Step 3: List the number of unpaired electrons for each complex.
\( [Fe(CN)_6]^{3-} \): 1 unpaired electron
\( [FeF_6]^{3-} \): 5 unpaired electrons
\( [CoF_6]^{3-} \): 4 unpaired electrons
\( [Mn(CN)_6]^{3-} \): 2 unpaired electrons
Step 4: Match the number of unpaired electrons with the given options.
The number of unpaired electrons are 1, 5, 4, 2 respectively, which matches option (1).