To determine the number of unpaired electrons responsible for the paramagnetic nature of the given complex species, we need to analyze the electronic configuration of the central metal ion in each complex. The presence of unpaired electrons in the d-orbitals of the central metal ion makes the complex paramagnetic.
Following the above analysis, the number of unpaired electrons responsible for the paramagnetic nature in each complex species is respectively: 1, 5, 4, 2.
To determine the number of unpaired electrons responsible for the paramagnetic nature of the given complex species, we need to understand the electronic configuration of the metal ions and the nature of the ligands involved. Let's analyze each complex:
Therefore, the number of unpaired electrons in the complexes are 1, 5, 4, and 2, respectively, for [Fe(CN)_6]^{3-}, [FeF_6]^{3-}, [CoF_6]^{3-}, and [Mn(CN)_6]^{3-}.
Correct Answer: 1, 5, 4, 2

Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
