Step 1: Maximum value of \( \sin 2x \) is 1, and maximum value of \( \cos 4x \) is also 1.
Therefore,
\[ \sin 2x + \cos 4x \leq 1 + 1 = 2 \] Step 2: Equality holds only if \( \sin 2x = 1 \) and \( \cos 4x = 1 \)
\[ \sin 2x = 1 \Rightarrow 2x = \dfrac{\pi}{2} + 2n\pi \Rightarrow x = \dfrac{\pi}{4} + n\pi \] \[ \cos 4x = 1 \Rightarrow 4x = 2m\pi \Rightarrow x = \dfrac{m\pi}{2} \] Equating:
\[ \dfrac{\pi}{4} + n\pi = \dfrac{m\pi}{2} \Rightarrow \text{Check for integer solutions in } [-\pi, \pi] \] This equation has no solution for integer \( n, m \) such that \( x \in [-\pi, \pi] \)
Hence, no value of \( x \) in \( [-\pi, \pi] \) satisfies both conditions simultaneously.
The value of \(\dfrac{\sqrt{3}\cosec 20^\circ - \sec 20^\circ}{\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ}\) is equal to
If $\cot x=\dfrac{5}{12}$ for some $x\in(\pi,\tfrac{3\pi}{2})$, then \[ \sin 7x\left(\cos \frac{13x}{2}+\sin \frac{13x}{2}\right) +\cos 7x\left(\cos \frac{13x}{2}-\sin \frac{13x}{2}\right) \] is equal to
If \[ \frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\alpha + \beta\sqrt{5}}{2}, \] where \( \alpha, \beta \in \mathbb{N} \), then the value of \( \alpha + \beta \) is ___________.