Domain constraints:
\[
x + 4 \geq 0 \implies x \geq -4, \quad 5 - x \geq 0 \implies x \leq 5
\]
Domain: \([-4, 5]\).
Let
\[
f(x) = \sqrt{x + 4} + \sqrt{5 - x}
\]
Check max value of \(f(x)\):
At \(x = -4\):
\[
f(-4) = 0 + \sqrt{9} = 3
\]
At \(x = 5\):
\[
f(5) = \sqrt{9} + 0 = 3
\]
Find critical point by differentiating \(f(x)\):
\[
f'(x) = \frac{1}{2\sqrt{x + 4}} - \frac{1}{2\sqrt{5 - x}} = 0 \implies \sqrt{5 - x} = \sqrt{x + 4}
\]
Square both sides:
\[
5 - x = x + 4 \implies 2x = 1 \implies x = \frac{1}{2}
\]
Evaluate \(f\) at \(x = \frac{1}{2}\):
\[
f\left(\frac{1}{2}\right) = \sqrt{\frac{1}{2} + 4} + \sqrt{5 - \frac{1}{2}} = \sqrt{4.5} + \sqrt{4.5} = 2 \times \sqrt{4.5} = 2 \times \frac{3}{\sqrt{2}} = 3\sqrt{2} \approx 4.2426
\]
Since max \(f(x) \approx 4.2426<5\), equation
\[
\sqrt{x + 4} + \sqrt{5 - x} = 5
\]