

Step 1: Determine the number of unpaired electrons for each complex using Crystal Field Theory.
\( [Co(NH_3)_6]^{3+} \) (\( d^6 \), strong field): 0 unpaired electrons (diamagnetic) 
\( [Co(C_2O_4)_3]^{3-} \) (\( d^6 \), weak field): 4 unpaired electrons (paramagnetic) 
\( [MnCl_6]^{3-} \) (\( d^4 \), weak field): 4 unpaired electrons (paramagnetic) 
\( [Mn(CN)_6]^{3-} \) (\( d^4 \), strong field): 2 unpaired electrons (paramagnetic) 
\( [CoF_6]^{3-} \) (\( d^6 \), weak field): 4 unpaired electrons (paramagnetic) 
\( [Fe(CN)_6]^{3-} \) (\( d^5 \), strong field): 1 unpaired electron (paramagnetic) 
\( [FeF_6]^{3-} \) (\( d^5 \), weak field): 5 unpaired electrons (paramagnetic) 
Step 2: Identify the number of unpaired electrons for each paramagnetic species.
The paramagnetic species have 4, 4, 2, 4, 1, and 5 unpaired electrons respectively. 
Step 3: Count the number of paramagnetic species that share the same number of unpaired electrons.
One unpaired electron: \( [Fe(CN)_6]^{3-} \) (1 species) 
Two unpaired electrons: \( [Mn(CN)_6]^{3-} \) (1 species) 
Four unpaired electrons: \( [Co(C_2O_4)_3]^{3-} \), \( [MnCl_6]^{3-} \), \( [CoF_6]^{3-} \) (3 species) 
Five unpaired electrons: \( [FeF_6]^{3-} \) (1 species)
The maximum number of paramagnetic species with the same number of unpaired electrons is 3 (all having 4 unpaired electrons).
‘X’ is the number of electrons in $ t_2g $ orbitals of the most stable complex ion among $ [Fe(NH_3)_6]^{3+} $, $ [Fe(Cl)_6]^{3-} $, $ [Fe(C_2O_4)_3]^{3-} $ and $ [Fe(H_2O)_6]^{3+} $. The nature of oxide of vanadium of the type $ V_2O_x $ is: 
 
![[CoF6]3](https://images.collegedunia.com/public/qa/images/content/2025_03_17/Screenshot_ac0a74501742206019892.jpeg)
The molar conductance of an infinitely dilute solution of ammonium chloride was found to be 185 S cm$^{-1}$ mol$^{-1}$ and the ionic conductance of hydroxyl and chloride ions are 170 and 70 S cm$^{-1}$ mol$^{-1}$, respectively. If molar conductance of 0.02 M solution of ammonium hydroxide is 85.5 S cm$^{-1}$ mol$^{-1}$, its degree of dissociation is given by x $\times$ 10$^{-1}$. The value of x is ______. (Nearest integer)
x mg of Mg(OH)$_2$ (molar mass = 58) is required to be dissolved in 1.0 L of water to produce a pH of 10.0 at 298 K. The value of x is ____ mg. (Nearest integer) (Given: Mg(OH)$_2$ is assumed to dissociate completely in H$_2$O)
Sea water, which can be considered as a 6 molar (6 M) solution of NaCl, has a density of 2 g mL$^{-1}$. The concentration of dissolved oxygen (O$_2$) in sea water is 5.8 ppm. Then the concentration of dissolved oxygen (O$_2$) in sea water, in x $\times$ 10$^{-4}$ m. x = _______. (Nearest integer)
Given: Molar mass of NaCl is 58.5 g mol$^{-1}$Molar mass of O$_2$ is 32 g mol$^{-1}$.