Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
A permutation is an arrangement of multiple objects in a particular order taken a few or all at a time. The formula for permutation is as follows:
\(^nP_r = \frac{n!}{(n-r)!}\)
nPr = permutation
n = total number of objects
r = number of objects selected