For \( a^b = 1 \), the following cases hold:
Any non-zero base to the power 0 equals 1. Check the base: \[ (x^2 - 5x + 7) = (-1)^2 + 5 + 7 = 1 + 5 + 7 = 13 \neq 0 \] So, this is valid. ✅ \( x = -1 \) is a solution.
Solve: \[ x^2 - 5x + 6 = 0 \Rightarrow (x - 2)(x - 3) = 0 \Rightarrow x = 2, \; x = 3 \] Both are valid integer solutions.
✅ \( x = 2 \) and \( x = 3 \) are solutions.
\[ x^2 - 5x + 8 = 0 \Rightarrow \text{Discriminant} = 25 - 32 = -7 < 0 \] No real roots. ❌ No integer solution.
The total number of integer solutions is: \[ \boxed{3} \] Correct Option: (B)
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: