Question:

The number of integers that satisfy the equality (x25x+7)x+1=1(x^2-5x+7)^{x+1} = 1 is

Updated On: Sep 17, 2024
  • 2
  • 3
  • 5
  • 4
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

The correct answer is (B): 33

(x25x+7)x+1=1(x^2-5x+7)^{x+1} = 1

We know, for ab=1a^b=1, if

a=1-a =-1 then bb is even.

a=1-a = 1  then bb is any number 

a>0-a>0 then b=0b=0

Case 1: x+1=0x=1x+1=0 ⇒ x = -1

Case 2: x25x+7=1x25x+6=0x=2  or  3x^2-5x+7 = 1 ⇒ x^2-5x+6=0 ⇒ x = 2 \;or \;3

Case 3: x25x+7=1 x25x+8=0x^2-5x+7 = -1 ⇒ x^2-5x+8=0

but x x is not an integer 

 The number of integers satisfies the equation is 33

Was this answer helpful?
0
0