Given:
\begin{itemize}
\item Screen distance \( D = \frac{4}{3} \, m} \)
\item Screen length \( L = 1 \, m} \)
\item Wavelength \( \lambda = 450 \, nm} = 0.45 \times 10^{-6} \, m} \)
\item Distance between slits \( d = 6 \, \mum} = 6 \times 10^{-6} \, m} \)
\end{itemize}
The fringe spacing \( \Delta y \) is calculated using the formula:
\[
\Delta y = \frac{\lambda D}{d}
\]
Substituting the given values:
\[
\Delta y = \frac{0.45 \times 10^{-6} \times \frac{4}{3}}{6 \times 10^{-6}} = 0.1 \, m}
\]
The number of fringes in \( 1 \, m} \) is:
\[
\frac{L}{\Delta y} = \frac{1}{0.1} = 10
\]
Therefore, the number of bright fringes formed on the screen is:
\[
\boxed{10}
\]