Ellipse is $ \frac{x^{2}}{16}+\frac{y^{2}}{3} = 1$
Now, equation of normal at $\left(2, 3/2\right)$ is
$\frac{16x}{2}-\frac{3y}{3/2} = 16-3$
$\Rightarrow\quad8x-2y= 13$
$\Rightarrow \quad y=4x-\frac{13}{2}$
Let $y=4x-\frac{13}{2}$ touches a parabola
$y^{2} = 4ax.$
We know, a straight liney $= mx + c$ touches a parabola $y^{2}=4ax$ if a-me $= 0$
$\therefore\quad a-\left(4\right)\left(-\frac{13}{2}\right) = 0 \Rightarrow a = -26$
Hence, required equation of parabola is
$y^{2} = 4\left(-26\right)x = -104\,x$