The Paschen series corresponds to transitions where the electron falls to the \( n_1 = 3 \) energy level.
The lines in the Paschen series are given by:
1st line: \( n_2 = 4 \) 2nd line: \( n_2 = 5 \) 3rd line: \( n_2 = 6 \) Therefore, for the 3rd line of the Paschen series, \( n_1 = 3 \) and \( n_2 = 6 \).
Final Answer: 3 and 6.
An electrochemical cell is fueled by the combustion of butane at 1 bar and 298 K. Its cell potential is $ \frac{X}{F} \times 10^3 $ volts, where $ F $ is the Faraday constant. The value of $ X $ is ____.
Use: Standard Gibbs energies of formation at 298 K are:
$ \Delta_f G^\circ_{CO_2} = -394 \, \text{kJ mol}^{-1}; \quad \Delta_f G^\circ_{water} = -237 \, \text{kJ mol}^{-1}; \quad \Delta_f G^\circ_{butane} = -18 \, \text{kJ mol}^{-1} $
Consider the following electrochemical cell at standard condition. $$ \text{Au(s) | QH}_2\text{ | QH}_X(0.01 M) \, \text{| Ag(1M) | Ag(s) } \, E_{\text{cell}} = +0.4V $$ The couple QH/Q represents quinhydrone electrode, the half cell reaction is given below: $$ \text{QH}_2 \rightarrow \text{Q} + 2e^- + 2H^+ \, E^\circ_{\text{QH}/\text{Q}} = +0.7V $$

In the above diagram, the standard electrode potentials are given in volts (over the arrow). The value of \( E^\circ_{\text{FeO}_4^{2-}/\text{Fe}^{2+}} \) is:
Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))