Step 1: {Apply the perpendicular axis theorem}
Using the theorem of perpendicular axes, we express the moment of inertia about an edge as:
\[
I = I_C + m \left( \frac{a}{\sqrt{2}} \right)^2
\]
Step 2: {Moment of inertia of cube about its center}
For a cube, the moment of inertia about its central axis is:
\[
I_C = \frac{ma^2}{12} + \frac{ma^2}{12} = \frac{ma^2}{6}
\]
Step 3: {Adding the parallel axis contribution}
\[
I = \left[ \frac{ma^2}{12} + \frac{ma^2}{12} \right] + \frac{ma^2}{2}
\]
\[
= \frac{2}{3} ma^2
\]
Thus, the correct answer is \( \frac{2}{3} ma^2 \).