Step 1: Understanding the modulus function.
The modulus function $f(x) = |x|$ maps every real number $x$ to a non-negative real number. Its codomain is $\mathbb{R}^{+}$ (non-negative real numbers).
Step 2: Check one-one property.
If $f(a) = f(b)$, then $|a| = |b|$. This means either $a = b$ or $a = -b$.
Thus, different inputs (e.g., $2$ and $-2$) give the same output. Hence, $f(x)$ is **not one-one**, but **many-one**.
Step 3: Check onto property.
For every $y \in \mathbb{R}^{+}$, there exists an $x \in \mathbb{R}$ such that $f(x) = |x| = y$.
Thus, the function is **onto** $\mathbb{R}^{+}$.
Step 4: Conclusion.
The function is **many-one and onto**, so the correct answer is (B).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
If the domain of the function $ f(x) = \log_7(1 - \log_4(x^2 - 9x + 18)) $ is $ (\alpha, \beta) \cup (\gamma, \delta) $, then $ \alpha + \beta + \gamma + \delta $ is equal to
Let $ A = \{-2, -1, 0, 1, 2, 3\} $. Let $ R $ be a relation on $ A $ defined by $ (x, y) \in R $ if and only if $ |x| \le |y| $. Let $ m $ be the number of reflexive elements in $ R $ and $ n $ be the minimum number of elements required to be added in $ R $ to make it reflexive and symmetric relations, respectively. Then $ l + m + n $ is equal to