Let \( f(x) = x + \frac{4}{x + 2} \).
To find the minima, take the derivative:
\[ f'(x) = 1 - \frac{4}{(x + 2)^2} \] Set \( f'(x) = 0 \Rightarrow 1 = \frac{4}{(x + 2)^2} \Rightarrow (x + 2)^2 = 4 \Rightarrow x = 0 \text{ or } -4 \)
Check values:
At \( x = 0 \), \( f(0) = 0 + \frac{4}{2} = 2 \)
At \( x = -4 \), \( f(-4) = -4 + \frac{4}{-2} = -4 - 2 = -6 \) (Not in the valid domain for minimum in this context).
Hence, the minimum value is \( \boxed{2} \).
Let \( [\cdot] \) denote the greatest integer function. If \[ \int_0^3 \left\lfloor \frac{1}{e^x - 1} \right\rfloor \, dx = \alpha - \log_e 2, \] then \( \alpha^3 \) is equal to: