Let \( f(x) = x + \frac{4}{x + 2} \).
To find the minima, take the derivative:
\[ f'(x) = 1 - \frac{4}{(x + 2)^2} \] Set \( f'(x) = 0 \Rightarrow 1 = \frac{4}{(x + 2)^2} \Rightarrow (x + 2)^2 = 4 \Rightarrow x = 0 \text{ or } -4 \)
Check values:
At \( x = 0 \), \( f(0) = 0 + \frac{4}{2} = 2 \)
At \( x = -4 \), \( f(-4) = -4 + \frac{4}{-2} = -4 - 2 = -6 \) (Not in the valid domain for minimum in this context).
Hence, the minimum value is \( \boxed{2} \).
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}
If $ \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p $, then $ 96 \log_e p $ is equal to _______